¹H NMR, ³¹P NMR and Raman Study of CaHPO₄ and SrHPO₄

B. Louati, K. Guidara, M. Gargouri, and M. Fourati

Laboratoire de l'état solide, Faculté des sciences de Sfax, BP 802, 3018 Sfax, Tunisia

Reprint requests to Dr. B. L.; E-mail: bassem_louati@yahoo.fr

Z. Naturforsch. **60a**, 121 – 126 (2005); received September 8, 2004

CaHPO₄ and SrHPO₄ were investigated using Raman, ¹H NMR and ³¹P NMR techniques to study the environment of their PO₄³⁻ tetrahedra and the percentage of mobile protons. ¹H NMR spectra at room temperature suggest the presence of three types of protons, in agreement with RX investigation. The percentage of mobile protons in SrHPO₄ is greater than in CaHPO₄ because Sr²⁺ is bigger than Ca²⁺. ³¹P NMR spectra at room temperature show two lines in the spectrum of SrHPO₄, revealing an equal environment of two sets of pairs of PO₄³⁻. The ³¹P NMR spectrum of CaHPO₄, however, exhibits three lines. This result was confirmed using a cross polarization (CP) sequence program. The first peak is attributed to the first set of pairs of P(1)O₄ units and the two other ones to P(2)O₄ and P(2')O₄ units.

Key words: Raman Spectroscopy; ¹H and ³¹P NMR Investigation.